FLAW DETECTION USING ENCIRCLING COIL EDDY CURRENT SYSTEMS

PRINCIPLES OF OPERATION

The detection of flaws such as seams, cracks, pits, slivers, weld-line defects and internal discontinuities in metallic materials can be done conveniently by using an encircling coil eddy current system. This type of inspection system is most frequently used to locate surface defects in bar stock or wire products, and to detect both ID and OD defects in tubing. The test is usually conducted at production speed.

The basic principles of operation in encircling or through coil systems are simple. The test coil is excited by an alternating current of a given frequency which induces a flow of eddy currents around the material that is passing through the coil. When a flaw in the material passes through the coil, it causes a change in the flow of eddy currents. It is this change that is detected by the electronics.

TESTING MAGNETIC MATERIALS

When testing materials such as carbon steel, austenitic stainless, alloy steels having a permeability higher than 1, it is often necessary to saturate the material with a magnetic field. The effect of this magnetic saturation is to even out the permeability variations in the material, thereby making the material appear to the test coil system as though it were non-magnetic. The material can be saturated by using a permanent magnet or a saturating coil in which D.C. current is flowing. In either case, the eddy current test coil is placed within the saturating field and performs the test.

ABSOLUTE OR DIFFERENTIAL TEST MODES

In actual testing, a single coil system (absolute mode) or a system of two or more coils that electrically subtract from each other (differential or null mode) may be used to detect defects.

When the absolute mode is used, the output of the coil containing acceptable material is fed into the electronics, and variations from this norm are detected. When the coils are connected in the differential mode, they continually test and compare adjacent segments of the material as it passes through the coils. If there is “good” material in both coils, the resulting difference is zero. In electronic terms, when the absolute mode is used, the change seen by the electronics is the difference between the biasing voltage output for good material and the change in this voltage caused by
a defect passing through the coil. For example, if a defect causes a change of 1 volt in the output of the coil, and the normal output of the coil is 10 volts, then the electronics senses a 10% change. When using the differential mode, the same defect would theoretically produce an infinite change as the difference, and the electronics would register 1 volt as compared to zero. The two modes are illustrated in the diagram below.

FREQUENCY SELECTION
The ability to select between a wide range of frequencies permits an eddy current tester to vary the depth of penetration and to discriminate between signals caused by conditions such as noise, handling marks, and defects. The proper frequency for testing a given material is determined by the conductivity, the type of defects to be detected, the diameter, and in the case of tubing, the wall thickness.

By properly choosing the excitation frequency for a given material, it is often possible to generate a phase shift between the signal for handling marks, and the signal for a defect. When testing tubing, if the excitation frequency is increased, the phase angle between the signal for a defect on the O.D. and the signal for a defect on the I.D. will increase. However, the signal amplitude for the I.D. defect will decrease as compared to the signal amplitude of the O.D. defect when the excitation frequency is increased. Thus, if the excitation frequency is too high, the detection of I.D. defects becomes impossible.

SENSITIVITY SELECTION
The sensitivity control permits adjustment of the level of defect signal at which the alarm circuits will function.

FILTER SELECTION
The speed at which a defect passes through the coil produces a change in the flow of eddy currents at a very distinct rate. This rate of change can be equated to a given frequency. Therefore, if circuits are used that only permit the instrument to accept these frequencies, signals generated at other frequencies will be ignored. The circuits that do this are called filters.
PHASE SELECTION

The phase control allows 360° rotation of all signals. This permits the rotation of desired signals to a place where they will exceed the threshold level and activate the alarm circuits. If a signal for an I.D. defect is smaller in amplitude than an equivalent O.D. defect, it is usually possible to adjust the phase control so that both defects activate the alarm circuits equally. This phase rotation is illustrated in the following diagram.

COIL SELECTION

The coils can be either absolute or differential mode. Some equipments permit use of both methods simultaneously. Coils can be wound with different physical characteristics such as the spacing between the differential coils, the actual width of the coils, and the use of multiple coils electrically connected in different configurations.

For some applications, such as inspecting only the weld portion of a tube or pipe, a tangent or sector coil is used instead of an encircling coil. This provides greater convenience as the material does not need to be threaded through the coil when changing coil sizes etc. Generally, the same principles for encircling coil eddy current testing are applicable also to tangent coils.

The purpose of these different coil systems is to improve the detection of specific types of defects in particular materials. In order to ensure equal test results on a product that does not have a round cross section, coils may also be manufactured to conform to the cross section of the product.